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Abstract. The crossing number of a graph is the minimum number of
edge intersections in a plane drawing of a graph, where each intersection
is counted separately. If instead we count the number of pairs of edges
that intersect an odd number of times, we obtain the odd crossing num-
ber. We show that there is a graph for which these two concepts differ,
answering a well-known open question on crossing numbers. To derive
the result we study drawings of maps (graphs with rotation systems).

1 A Confusion of Crossing Numbers

Intuitively, the crossing number of a graph is the smallest number of edge cross-
ings in any plane drawing of the graph. As it turns out, this definition leaves
room for interpretation, depending on how we answer the questions: what is
a drawing, what is a crossing, and how do we count crossings? The papers by
Pach and Tóth [7] and Székely [9] discuss the historical development of various
interpretations and, often implicit, definitions of the crossing number concept.

A drawing D of a graph G is a mapping of the vertices and edges of G to
the Euclidean plane, associating a distinct point with each vertex, and a simple
plane curve with each edge such that the ends of an edge map to the endpoints
of the corresponding curve. For simplicity, we also require that

– a curve does not contain any endpoints of other curves in its interior,
– two curves do not touch (that is, intersect without crossing), and
– no more than two curves intersect in a point (other than at a shared end-

point).

In such a drawing the intersection of the interiors of two curves is called a
crossing. Note that by the restrictions we placed on a drawing, crossings do not
involve endpoints, and at most two curves can intersect in a crossing. We often
identify a drawing with the graph it represents. For a drawing D of a graph G
in the plane we define

– cr(D) - the total number of crossings in D;



– pcr(D) - the number of pairs of edges which cross at least once; and
– ocr(D) - the number of pairs of edges which cross an odd number of times.

Remark 1. For any drawing D, we have ocr(D) ≤ pcr(D) ≤ cr(D).

We let cr(G) = min cr(D), where the minimum is taken over all drawings D
of G in the plane. We define ocr(G) and pcr(G) analogously.
Remark 2. For any graph G, we have ocr(G) ≤ pcr(G) ≤ cr(G).

The question (first asked by Pach and Tóth [7]) is whether the inequalities are
actually equalities.4 Pach [6] called this “perhaps the most exciting open problem
in the area.” The only evidence for equality is an old theorem by Chojnacki,
which was later rediscovered by Tutte—and the absence of any counterexamples.

Theorem 1 (Chojnacki [4], Tutte [10]). If ocr(G) = 0 then cr(G) = 0.5

In this paper we will construct a simple example of a graph with ocr(G) <
pcr(G) = cr(G). We derive this example from studying what we call weighted
maps on the annulus. Section 2 introduces the notion of weighted maps on arbi-
trary surfaces and gives a counterexample to ocr(M) = pcr(M) for maps on the
annulus. In Section 3 we continue the study of crossing numbers for weighted
maps, proving in particular that cr(M) ≤ cn · ocr(M) for maps on a plane with
n holes. One of the difficulties in dealing with the crossing number is that it is
NP-complete [2]. In Section 4 we show that the crossing number can be com-
puted in polynomial time for maps on the annulus. Finally, in Section 5 we show
how to translate the map counterexample from Section 2 into an infinite family
of simple graphs for which ocr(G) < pcr(G).

2 Map Crossing Numbers

A weighted map M is a 2-manifold S and a set P = {(a1, b1), . . . , (am, bm)} of
pairs of distinct points on ∂S with positive weights w1, . . . , wm. A realization R
of the map M = (S, P ) is a set of m properly embedded arcs γ1, . . . , γm in S
where γi connects ai and bi. 6

Let

cr(R) =
∑

1≤k<�≤m

i(γk, γ�)wkw�,

pcr(R) =
∑

1≤k<�≤m

[i(γk, γ�) > 0]wkw�,

ocr(R) =
∑

1≤k<�≤m

[i(γk, γ�) ≡ 1 (mod 2)]wkw�,

4 Doug West lists the problem on his page of open problems in graph theory [12]. Dan
Archdeacon even conjectured that equality holds [1].

5 In fact they proved something stronger, namely that in any drawing of a non-planar
graph there are two non-adjacent edges crossing an odd number of times. Also see [8].

6 If we take a realization R of a map M , and contract each boundary component to
a vertex, we obtain a drawing of a graph with a given rotation system [3]. For our
purposes, maps are a more visual way to look at graphs with a rotation system.



where i(γ, γ′) is the geometric intersection number of γ and γ′ and [x] is 1 if the
condition x is true, and 0 otherwise.

We define cr(M) = min cr(R), where the minimum is taken over all realiza-
tions R of M . We define pcr(M) and ocr(M) analogously.

Remark 3. For every map M , ocr(M) ≤ pcr(M) ≤ cr(M).

Conjecture 1. For every map M , cr(M) = pcr(M).

Lemma 1. If Conjecture 1 is true then cr(G) = pcr(G) for every graph G.

Proof. Let D be a drawing of G with minimal pair crossing number. Drill small
holes at the vertices. We obtain a drawing R of a weighted map M . If Con-
jecture 1 is true, there exists a drawing of M with the same crossing number.
Collapse the holes to vertices to obtain a drawing D′ of G with cr(D′) ≤ pcr(G).

We can, however, separate the odd crossing number from the crossing number
for weighted maps, even in the annulus (a disk with a hole).

d d

a

c

b

bc

a

Fig. 1. ocr < pcr.

When analyzing crossing numbers of drawings on the annulus, we describe
curves with respect to an initial drawing of the curve and a number of Dehn
twists. Consider, for example, the four curves in the left part of Figure 1. Com-
paring them to the corresponding curves in the right part, we see that the curves
labeled c and d have not changed, but the curves labeled a and b have each un-
dergone a single clockwise twist.

Two curves are isotopic rel boundary if they can be obtained from each other
by a continuous deformation which does not move the boundary ∂M . Isotopy
rel boundary is an equivalence relation, its equivalence classes are called isotopy
classes. An isotopy class on annulus is determined by a properly embedded arc
connecting the endpoints, together with the number of twists performed.

Lemma 2. Let a ≤ b ≤ c ≤ d be such that a + c ≥ d. For the weighted map M
in Figure 1 we have cr(M) = pcr(M) = ac + bd and ocr(M) = bc + ad.

Proof. The upper bounds follow from the drawings in Figure 1, the left drawing
for crossing and pair crossing number, the right drawing for odd crossing number;
it remains to prove the two lower bounds.



First, we claim that
pcr(M) ≥ ac + bd.

Proof of the claim. Let R be a drawing of M minimizing pcr(R). We can apply
twists so that the thick edge d is drawn as in the left part of Figure 1. Let α, β, γ
be the number of clockwise twists that are applied to arcs a, b, c in the left part
of Figure 1 to obtain the drawing R. Then,

pcr(R) = cd[γ �= 0]+bd[β �= −1]+ad[α �= 0]+bc[β �= γ]+ab[α �= β]+ac[α �= γ+1].
(1)

If γ �= 0 then pcr(R) ≥ cd + ab because at least one of the last five conditions in
(1) must be true; the last five terms contribute at least ab (since d ≥ c ≥ b ≥ a),
and the first term contributes cd. Since d(c − b) ≥ a(c − b), cd + ab ≥ ac + bd,
and the claim is proved in the case that γ �= 0.

Now assume that γ = 0. Equation (1) becomes

pcr(R) = bd[β �= −1] + bc[β �= 0] + ad[α �= 0] + ac[α �= 1] + ab[α �= β]. (2)

If β �= −1 then pcr(R) ≥ bd + ac because either α �= 0 or α �= 1. Since bd + ac ≥
bc + ad, the claim is proved in the case that β �= −1.

This leaves us with the case that β = −1. Equation (2) becomes

pcr(R) = bc + ad[α �= 0] + ac[α �= 1] + ab[α �= −1]. (3)

The right-hand side of Equation (3) is minimized for α = 0. In this case pcr(R) =
bc + ac + ab ≥ ac + bd because we assume that a + c ≥ d. Second, we claim that

ocr(M) ≥ bc + ad.

Proof of the claim. Let R be a drawing of M minimizing ocr(R). Let α, β, γ be
as in the previous claim. We have

ocr(R) = cd[γ]2+bd[β+1]2+ad[α]2+bc[β+γ]2+ab[α+β]2+ac[α+γ+1]2, (4)

where [x]2 is 0 if x ≡ 0 (mod 2), and 1 otherwise.
If β �≡ γ (mod 2) then the claim clearly follows unless γ = 0, β = 1, and

α = 0 (all modulo 2). In that case ocr(R) ≥ bc + ab + ac ≥ bc + ad. Hence, the
claim is proved if β �≡ γ (mod 2).

Assume then that β ≡ γ (mod 2). Equation (4) becomes

ocr(R) = cd[β]2 + bd[β + 1]2 + ad[α]2 + ab[α + β]2 + ac[α + β + 1]2. (5)

If α ≡ 1 (mod 2) then the claim clearly follows because either cd or bd contributes
to the ocr. Thus we can assume α ≡ 0 (mod 2). Equation (5) becomes

ocr(R) = (cd + ab)[β]2 + (bd + ac)[β + 1]2. (6)

For both β ≡ 0 (mod 2) and β ≡ 1 (mod 2) we get ocr(R) ≥ bc + ad. This
finishes the proof of the second claim. �



We get a separation of pcr and ocr for maps with small integral weights.

Corollary 1. There is a weighted map M on the annulus with edges of weight
a = 1, b = c = 3, and d = 4 for which cr(M) = pcr(M) = 15 and ocr(M) = 13.

Optimizing the gap over the reals yields b = c = 1, a = (
√

3 − 1)/2, and
d = 1 + a, giving us the following separation of pcr(M) and ocr(M).

Corollary 2. There exists a weighted map M on the annulus with ocr(M) ≤√
3/2 pcr(M).

Conjecture 2. For every weighted map M on the annulus, ocr(M) ≥
√

3
2 pcr(M).

3 Upper Bounds on Crossing Numbers

In Section 5 we will transform the separation of ocr and pcr on maps into a
separation on graphs. In particular, we will show that for every ε > 0 there is a
graph G such that

ocr(G) < (
√

3/2 + ε) cr(G).

The gap, however, cannot be arbitrarily large, as Pach and Tóth showed.

Theorem 2 (Pach, Tóth [7]). Let G be a graph. Then cr(G) ≤ 2(ocr(G))2. 7

This result suggests the question whether the linear separation can be im-
proved. We do not believe this to be possible:

Conjecture 3. There is a c > 0 such that cr(G) < c · ocr(G).

Using a graph redrawing idea from from [8] (which investigates other appli-
cations of that idea), we can show something weaker:

Theorem 3. cr(M) ≤ ocr(M)
(
n+4

4

)
/5 for weighted maps M on the plane with

n holes, with strict inequality if n > 1.

As a special case of the theorem, we have that if M is a (weighted) map on
the annulus (n = 2) then cr(M) < 3 ocr(M), which comes reasonably close to
the

√
3/2 lower bound from the previous section. The theorem shows that any

counterexample to Conjecture 3 cannot be constructed on a plane with a small,
fixed number of holes. For reasons of space, we do not include the proof of the
theorem.

7 In terms of pcr(G) better upper bounds on cr(G) are known [11, 5].



4 Computing Crossing Numbers on the Annulus

Let M be a map on the annulus. We explained earlier that as far as crossing
numbers are concerned we can describe a curve in the realization of M by a
properly embedded arc γab connecting endpoints a and b on the inner and outer
boundary of the annulus, and an integer k ∈ Z, counting the number of twists
applied to the curve γab. Our goal is to compute the number of intersections
between two arcs after applying a number of twists to each one of them. Since
twists can be positive and negative and cancel each other out, we need to count
crossings more carefully. Let us orient all arcs from the inner boundary to the
outer boundary. Traveling along an arc α, a crossing with β counts as +1 if β
crosses from right to left, and as −1 if it crosses from left to right. Summing up
these numbers over all crossings for two arcs α and β yields î(α, β), the algebraic
crossing number of α and β. Tutte [10] introduced the notion

acr(G) = min
D

∑
{e,f}∈(E

2)
|̂i(γe, γf )|,

the algebraic crossing number of a graph, a notion that apparently has not drawn
any attention since.

Let Dk(γ) denote the result of adding k twists to the curve γ. For two curves
α and β connecting the inner and outer boundary we have:

î(Dk(α), D�(β)) = k − � + î(α, β). (7)

Note that i(α, β) = |̂i(α, β)| for any two curves α, β on the annulus.
Let π be a permutation of [n]. A map Mπ corresponding to π is constructed

as follows. Choose n + 1 points on each of the two boundaries and number them
0, 1, . . . , n in the clockwise order. Let ai be the vertex numbered i on the outer
boundary and bi be the vertex numbered πi on the inner boundary, i = 1, . . . , n.
We ask ai to be connected to bi in Mπ.

We will encode a drawing R of Mπ by a sequence of n integers x1, . . . , xn

as follows. Fix a curve β connecting the a0 and b0 and choose γi be such that
i(β, γi) = 0 (for all i). We will connect ai, bi with the arc Dxi(γi) in R. Note
that for i < j, î(γi, γj) = [πi > πj ] and hence

î(Dxi(γi), Dxj (γj)) = xi − xj + [πi > πj ].

We have

acr(Mπ) = cr(Mπ) = min
{∑

i<j

∣∣xi − xj + [πi > πj ]
∣∣wiwj : xi ∈ Z, i ∈ [n]}, (8)

pcr(Mπ) = min
{∑

i<j

[xi − xj + [πi > πj ] �= 0]wiwj : xi ∈ Z, i ∈ [n]
}
, (9)

ocr(Mπ) = min
{∑

i<j

[xi − xj + [πi > πj ] �≡ 0 (mod 2)]wiwj : xi ∈ Z, i ∈ [n]
}
.

(10)



Consider the relaxation of the integer program for cr(Mπ):

cr′(Mπ) = min
{∑

i<j

∣∣xi − xj + [πi > πj ]
∣∣wiwj : xi ∈ R, i ∈ [n]

}
. (11)

Since (11) is a relaxation of (8), we have cr′(Mπ) ≤ cr(Mπ). The following lemma
shows that cr′(Mπ) = cr(Mπ).

Lemma 3. Let n be a positive integer. Let bij ∈ Z and let aij ∈ R be non-
negative, 1 ≤ i < j ≤ n. Then

min
{∑

i<j

aij

∣∣xi − xj + bij

∣∣ : xi ∈ R, i ∈ [n]
}

has an optimal solution with xi ∈ Z, i ∈ [n].

Proof. Let x∗ be an optimal solution which satisfies the maximum number of
xi − xj + bij = 0, 1 ≤ i < j ≤ n. Without loss of generality, we can assume
x∗

1 = 0. Let G be a graph on vertex set [n] with an edge between vertices i, j if
x∗

i − x∗
j + bij = 0. Note that if i, j are connected by an edge and one of x∗

i , x
∗
j is

an integer then both x∗
i and x∗

j are integers. It is then enough to show that G is
connected.

Suppose that G is not connected. There exists non-empty A � V (G) such
that there are no edges between A and V (G) − A. Let χA be the characteristic
vector of the set A, that is, (χA)i = [i ∈ A]. Let f(λ) be the value of the
objective function on x = x∗ +λ ·χA. Let I be the interval on which the signs of
the xi − xj + bij , 1 ≤ i < j ≤ n are the same as for x∗. Then I is not the entire
line (otherwise G would be connected). Since f(λ) is linear on I and an open
neighborhood of 0 belongs to I we conclude that f is constant on I. Choosing
x = x∗ + λχA for λ an endpoint of I gives an optimal solution satisfying more
xi − xj + bij = 0, 1 ≤ i < j ≤ n, a contradiction.

Theorem 4. The crossing number of maps on the annulus can be computed in
polynomial time.

Proof. Note that cr′(Mπ) is computed by the following linear program Lπ:

min
∑
i<j

yijwiwj

yij ≥ xi − xj + [πi > πj ], 1 ≤ i < j ≤ n
yij ≥ −xi + xj − [πi > πj ], 1 ≤ i < j ≤ n.

Question 1. Let M be a map on the annulus. Can ocr(M) be computed in
polynomial time?

Conjecture 4. For any map M on the annulus cr(M) = pcr(M).



5 Separating Crossing Numbers of Graphs

We modify the map from Lemma 2 to obtain a graph G separating ocr(G) and
pcr(G). The graph G will have integral weights on edges. From G we can get an
unweighted graph G′ with ocr(G′) = ocr(G) and pcr(G′) = pcr(G) by replacing
an edge of weight w by w parallel edges of weight 1 (this does not change any of
the crossing numbers). If needed we can get rid of parallel edges by subdividing
edges, which does not change any of the crossing numbers.

We start with the map M from Lemma 2 with the following integral weights:

a =

⌊√
3 − 1
2

m

⌋
, b = c = m, d =

⌊√
3 + 1
2

m

⌋
,

where m ∈ N will be chosen later.
We replace each pair (ai, bi) of M by wi pairs (ai,1, bi,1), . . . , (ai,wi , bi,wi)

where the ai,j (bi,j) occur on ∂S in clockwise order in a small interval around of
ai (bi). We can argue that all the curves corresponding to (ai, bi) can be routed
in parallel in an optimal drawing, and, therefore, the resulting map N with unit
weights will have the same crossing numbers as M .

We then replace the boundaries of the annulus by cycles (using one vertex for
each ai,j and bi,j), obtaining a graph G. We assign weight W = 1+cr(N) to the
edges in the cycles. This ensures that in a drawing of G minimizing any of the
crossing numbers the boundary cycles are embedded without any intersections.
This means that a drawing of G minimizing any of the crossing numbers looks
very much like the drawing of a map on the annulus. With one subtle difference:
one of the boundaries may flip.

Given the map N on the annulus, the flipped map N ′ is obtained by flipping
the order of the points on one of the boundaries. In other words, there are
essentially two different ways of embedding the two boundary cycles of G on
the sphere without intersections depending on the relative orientation of the
boundaries. In one of the cases the drawing D of G gives a drawing of N , in the
other case it gives a drawing of the flipped map N ′. Fortunately, in the flipped
case the group of edges corresponding to the weighted edge from ai to bi must
intersect often with each other (as illustrated in Figure 2).

a

b

d

c

Fig. 2. The inside flipped.



Now we know that

ocr(G) ≤ ocr(N) (since every drawing of N is a drawing of G)
≤ w1w3 + w2w4 (by Lemma 2)

≤ 3
2
m2 (by the choice of weights).

We will presently prove the following estimate on the flipped map.

Lemma 4. ocr(N ′) ≥ 2m2 − 4m.

With that estimate and our discussion of flipped maps, we have

cr(G) = min{cr(N), cr(N ′)}
≥ min{cr(N), ocr(N ′)} (since ocr ≤ cr)

≥ min{
√

3m2 − 2m, 2m2 − 4m} (choice of w, and Lemma 4).

By making m sufficiently large, we can make the ratio of ocr(G) and cr(G)
arbitrarily close to

√
3/2.

Theorem 5. For any ε > 0 there is a graph G such that

ocr(G) < (
√

3/2 + ε) cr(G).

The proof of Lemma 4 will require the following estimate.

Lemma 5. Let 0 ≤ a1 ≤ a2 ≤ · · · ≤ an be such that an ≤ a1 + · · ·+ an−1. Then

max
|yi|≤ai

⎛
⎝
(

n∑
i=1

yi

)2

− 2
n∑

i=1

y2
i

⎞
⎠ =

(
n∑

i=1

ai

)2

− 2
n∑

i=1

a2
i .

Proof of Lemma 4 Let w1 = a, w2 = b, w3 = d, w4 = c (with a, b, c, d as
in the definition of N). In any drawing of N ′ each group of the edges split into
two classes, those with an even number of twists and those with an odd num-
ber of twists (two twists make the same contribution to ocr(M ′) as no twists).



Consequently, we can estimate ocr(N ′) as follows.

ocr(N ′) = min
0≤ki≤wi

⎛
⎝ 4∑

i=1

(
ki

2

)
+

4∑
i=1

(
wi − ki

2

)
+
∑
i�=j

ki(wj − kj)

⎞
⎠

≥ −1
2

4∑
i=1

wi + min
0≤xi≤wi

⎛
⎝ 4∑

i=1

x2
i

2
+

4∑
i=1

(wi − xi)2

2
+
∑
i�=j

xi(wj − xj)

⎞
⎠

= −1
2

4∑
i=1

wi +
1
4

(
4∑

i=1

wi

)2

+ min
|yi|≤wi/2

⎛
⎝2

4∑
i=1

y2
i −

(
4∑

i=1

yi

)2
⎞
⎠

≥ 1
2

4∑
i=1

w2
i − 1

2

4∑
i=1

wi (using Lemma 5)

≥ 1
2

⎛
⎝
(√

3 + 1
2

m − 1

)2

+ 2m2 +

(√
3 − 1
2

m − 1

)2

− 4m

⎞
⎠

≥ 2m2 − 4m.

(12)

The equality between the second and third line can be verified by substituting
yi = xi − wi/2. �

Proof of Lemma 5 Let y1, . . . , yn achieve the maximum value. Replacing the
yi by |yi| does not decrease the objective function. Without loss of generality, we
can assume 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn. Note that yi < yj then yi = ai (otherwise
increasing yi by ε and decreasing yj by ε increases the objective function for
small ε).

Let k be the largest i such that yi = ai. Let k = 0 if no such i exists. We
have yi = ai for i ≤ k and yk+1 = · · · = yn. If k = n we are done. Let

f(t) =

(
k∑

i=1

ai + (n − k)t

)2

− 2

(
k∑

i=1

a2
i + (n − k)t2

)
.

We have

f ′(t) = 2(n − k)

(
k∑

i=1

ai + (n − k − 2)t

)
.

Note that for t < ak+1 we have f ′(t) > 0 and hence the only optimal choice is
t = ak+1. Hence yk+1 = ak+1, a contradiction with our choice of k. �

6 Conclusion

The relationship between the different crossing numbers remains mysterious,
and we have already mentioned several open questions and conjectures. Here we



want to revive a question first asked by Tutte (in slightly different form). Recall
the definition of the algebraic crossing number from Section 4:

acr(G) = min
D

∑
{e,f}∈(E

2)
|̂i(γe, γf )|,

where γe is a curve representing edge e in a drawing D of G. It is clear that

acr(G) ≤ cr(G).

Does equality hold?
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